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Abstract — The paper presents the Lorentz force and Maxwell's
stress formulas that give the same result of global force calculation
for FE method. Edge element method using vector potential A and
nodal element method using scalar potential Q are considered.
The formulas have been obtained from virtual work principle that
has been adopted to the FE model. The FE network must be
regular to obtain the equivalent formulas. The results of force
calculation using proposed methods have been compared with
analytical results. The system with three cuboidal magnets has
been analyzed. Moreover the forces in the system given by TEAM
Workshops Problem No. 7 have been considered.

I. INTRODUCTION

The different methods have been used to describe the global
magnetic force such as virtual work principle (VP), Maxwell's
stresses (MS), Lorentz formula, equivalent currents (EC) [1,2,3].
For the exact solution of field equations all these methods lead to
the same result and the methods are considered to be equivalent.
However the commonly used FE packages do not guarantee the
identity of the results, e.g. the result of MS differs from the result
of EC. The paper deals with the equivalence of global force
description for FE method. Edge element method (EEM) using
magnetic vector potential A and nodal element method (NEM)
using scalar potential Q are considered.

Il. VIRTUAL WORK APPROACH TO THE FE SOLUTION

The force acting on the region Vp with body D is analyzed.
Let us assume that we have solved FE equations with the
unknown vector @ of edge values of A or with unknown vector
Q of nodal values of Q. Using these vectors we can describe
the field sources (FSs) that are caused both by the conducting
currents and by equivalent magnetizing currents that model
ferromagnetic material and permanent magnets. For EEM the
field sources represent mmfs 0 associated with element edges,
and for NEM the sources are given by nodal flux injections @,

8=CTR,,Cop, ®=KTA,KQ. (1a,b)

Here C is the matrix that transposes vector ¢ into the vector of
facet values of flux densities, K is the matrix that transforms Q
into vector of edge values of gradQ and R, or Ay is the
reluctance or permeance matrix of EEM or NEM equations
that are calculated for permeability p equal to vacuum
permeability po.

First, in order to describe the magnetic force acting on D
the virtual principle was applied and the virtual displacement
of FSs has been considered, e.g. the virtual displacement in the
direction of axis x, see Fig.1. In the FE models we should
consider the discrete displacement, e.g. displacement of th,. In
the virtual displacement of FSs the FE network should be kept
constant. This requirement can be satisfied for the discrete

systems of regular grid in displacement direction, e.g. see Fig. 1
where height of the elements in the direction of x are identical
and hy=h,.1=hy. For virtual displacement in the x-direction
virtual work principle gives the following formulas
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where k., k_ are the conversion matrices which project the
displacement of mmfs 6 or flux injections ® by a distance + hy
in the direction of axis x.

I11. FORCE DENSITY AND MAXWELL STRESS FORMULAS

The presented above formulas (2) can be transformed into
the unified Lorentz force formulas that describe the force by its
volume density f using: (a) equivalent magnetizing and
conducting currents for vector potential formulation and (b)
equivalent nodal flux injections for scalar potential
formulation. In the obtained formulas the force F, acting on
the region of the i th element is described as follows
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Here 6,q,i+p, O:qi+p (0=1,2; p=0,1) are the components of vector
0 related to edges eyq,ivp, €xqi+p; Pyqir Poqi are the facet values of
B for facets S, Sy Pq,ir Pgiv1(d=1,..,4) are the components
of vector @ for nodes Qg,i, Qq,i+1, Uxq,i i the edge value of H for
edge eyq, see Fig.1.

For regular grid the force formulas (3) can be transformed into
the MS formulas that describe the mean values of stress tensor
components in elements. For the i-th element in Fig. 1 we obtain
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(5b)
Equations (4a,b) relate to the EEM and (5a,b) to the NEM,
Bugi (0=1,2; u=x,y,z) is the value of the u-th component of flux
density B for facet Sy and Hy,; is the value of the u-th
component of H for edge e,q; - Fig.1.
It should be noticed that in (4a) the product Byy;B,y; represents
the mean value of B? for the i-th element, szBmez_i.
However in the classical approaches mean value of BZ is

Bi=(By+By,)"/4 or Bi=(Bji+B)/2. (6a,b)
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Fig.1. FE network of regular elements in the direction of axis x

The mean values of Hf and H?2 in (5a) are represented by the

products of edge values of H for edges eyq;i, 8yqi+1 and €4q,i, €1q,i1.
The description of the mean value of B in (4a) and H§, HZin

(5a) is the particular feature of the presented MS formulas.

The formulas (4), (5) have been obtained from (3). Thus it is
easy to prove that if the region Vp is empty and subdivided into
regular elements the force calculated from (4), (5) is exactly
equal to zero, i.e. (4), (5) give a faultless result (with rounding
error accuracy). This is the most advantageous property of the
presented methods.

IV. EXAMPLES

The presented formulas has been verified be comparing the
FE solution with the analytical solution. The forces acting in
the system of cuboidal permanent magnets (PMs) have been
analyzed [4]. The magnets are placed in the unbounded empty
space. The permeability of PMs is assumed to be equal to .
The results of force calculation using FE method and formulas
(2-5) have been compared with the exact analytical results. In
order to obtain the analytical results a special software was
prepared. The analytical method presented in [5] has been
generalized and adopted for multi-magnet system. Here the
results for system of 3 PMs are discussed (Fig. 2). The relative
value of force F, acting on PM | is calculated. This value is
defined as follows F,=F, /(HZ2u,lw), where H; is the coercive

force and Iw is the area of active surface of PM I. Here, we
present the selected results for system of w=I=2w,+Aw,
5=0.3w, h=0.4w. The calculations have been performed for
different relative values of Aw and constant value of 2w,+Aw.
First the models of regular mesh in PM region are considered. In
the models h,=h=1/24, h,=h/8=5/6. The grid consists of about
1.4x10° hexahedrons. Fig. 3 demonstrates the exact values of
Fy and the relative error ¢ in F,, calculation using FEM. Three
methods have been applied: (2) EEM with formulas (4), (b)
EEM with classical procedure using (6b), and (c) NEM with
formulas (5). Is should be noticed that the results of methods (a)
and (c) are independent of the location of the integration
surface around D, e.g. the results for integration over the
surface in the i-th and the i—1st element in Fig.1 are the same.
The procedure (b) does not satisfy this property.
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Fig.2. Considered system with 3 cuboidal permanent magnets (PM)
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Fig.3. Relative force and error ¢ of force calculation for methods (a), (b), (c)

The discussed MS formulas have been used in the calcula-
tions of force between the coil and conducting plate with hole,
see TEAM Problem No. 7 [6]. The A-T-T, formulation with EEM
was applied [6]. The calculations of force have been performed
for different values of distance b between the integration plane S
and the upper boundary surface of plate (S lies between coil and
plate). For all considered values of b formulas (4) give identical
result. The maximum value of repulsive force F, is 2.5493N.
However classical approaches with (6) give different values, e.g.
from (6a) we obtain F,=2.5357 N for b=9 mm, F,=2.5278 N for
b=21 mm, F,=2.5122 N for b=27 mm, and from (6b) F,=2.5228 N
for b=9mm, F=25064N for b=21mm, F=2.4750N for
b=27 mm. Thus the values of F, differ even of 2%.

V. CONCLUSION

The presented methods of force calculation provide good
accuracy. In the region with regular mesh the calculated value
of force acting on the empty space is exactly equal to zero. The
results are independent of the location of integration surface.
The most important shortcoming of equivalent formulas is the
requirement of homogeneity in relation to the FE grid.
However even for non-regular mesh the methods give
satisfactory results. The equations of EEM/NEM are similar to
the equations of cells method (CM) and finite integration
technique (FIT) [6]. Therefore, the presented formulas of force
calculation can be easy adopted for CM and FIT.
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